# Resilient Domestic Retrofit: Producing Real World Performance

Marianne Heaslip
URBED (Urbanism Environment and Design) Ltd

Dominic McCann Carbon Coop



## A problem for newbuild housing.....



#### A load of hot air

Are the guarantees offered for new-builds worth the paper they are printed on? Overoptimistic claims about energy use are misleading buyers





Mind the energy gap: Jo Donaldson with her daughter, Charlotte. The family's new home in Suffolk was insulated so badly that £1 coins could be fitted between the joins in the windows (Vicki Couchman)

A problem for new-build housing.....

....an even bigger problem in retrofit?





Report on TSB Retrofit for the Future Programme.

# The Project

- Stretching design targets
  - 17kgCO<sub>2</sub>/m<sup>2</sup>.year total carbon emissions
  - 60 kWh/m<sup>2</sup>.year Space Heating Demand
- 9 homes scattered across Greater Manchester (8 'whole house')
- Various typologies and occupants
- 'Fabric First' approach
- Design integrated with energy modelling.
- Traditional contract with 'mainstream' contractor.
- Householders 'living in' during the works not possible to strip back to brick.
- 'Modest' budgets of £20-40K per house.





#### How we tackled it:

- Full SAP (9.92), used carefully, including all energy use (not just regulated)
- Calibrated against actual bills (conscious of 'pre-bound' effect), and informed by householder questionnaire.
- Detailed pre-works surveys and some conservative assumptions about performance. Careful design, integrated with energy model.
- Quality control on site though within limits of budget and acceptable disruption.





#### The Data

- Physical data and monitoring by householders, by Carbon Coop and by University of Salford.
- Householder views gathered through surveys by University of Salford, Carbon Coop and independent researchers.
- Difficulties of patchy physical data esp before works.
- Difficulties of monitoring PV generation and use.
- What level of data is 'good enough' to inform future designs and modelling? To determine the
- Householders limits for being 'guinea pigs' (5 out of 8 consent to full analysis).

|                   | Salford Univer                      | Householder data (days)      |                                   |  |
|-------------------|-------------------------------------|------------------------------|-----------------------------------|--|
| Available<br>data | Gas data<br>(no reliable elec data) | Temperature<br>RH & CO2 data | Gas / Electricity<br>billing data |  |
| House 1           | 505                                 | 515                          | 5170                              |  |
| House 2           | 0                                   | 313                          | 2501                              |  |
| House 3           | 366                                 | 366                          | 3099                              |  |
| House 4           | 273                                 | 203                          | 1790                              |  |
| House 5           | 243                                 | 574                          | 537                               |  |

| Air-<br>permeability | Before (m3/m2.hr @ 50pa) |                                | After (m3/m2.hr @ 50pa) |                   |                                |              |
|----------------------|--------------------------|--------------------------------|-------------------------|-------------------|--------------------------------|--------------|
|                      | Modelled<br>(SAP)        | Actual<br>(Test to<br>EN13829) | % difference            | Modelled<br>(SAP) | Actual<br>(Test to<br>EN13829) | % difference |
| House 1              | 13.60                    | 9.43                           | 31% better              | 5.00              | 9.22                           | 84% worse    |
| House 2              | 16.00                    | n/a                            | n/a                     | 5.00              | 8.88                           | 77% worse    |
| House 3              | 15.40                    | n/a                            | n/a                     | 5.00              | 10.18                          | 103% worse   |
| House 4              | 21.6                     | 14.55                          | 32% better              | 5.00              | 13.55                          | 171% worse   |
| House 5              | 18.4                     | 16.71                          | 9% better               | 5.00              | 11.69                          | 133% worse   |

Predicted versus Actual Gas Use kWh/m2.a



→ Predict ed gas use (design) ■ Acutal Gas Retrofit Gas Use

UK Average: 170kWh/m<sup>2</sup>.a

'Before' Average: 151kWh/m<sup>2</sup>.a

'After' Average: 79kWh/m<sup>2</sup>.a





UK Average: 140kWh/m<sup>2</sup>.a

'Before' Average: 125kWh/m<sup>2</sup>.a

'After' Average: 60kWh/m<sup>2</sup>.a

House 1:

Typical living room temperature







UK Average: 3885kWh, 'Before' Average: 3088kWh, 'After' Average: 1780kWh





#### Post Retrofit CO2 emissions - kgCO2/m2.a



### Householders' Views

- Varying tolerance for the disruption involved not an easy process.
- BUT general perception it was 'worth it' that homes are now easier to keep warm and more comfortable (see other research and case studies)
- Some possible under-heating (e.g. house 3), some higher temp preferences (e.g. house 4)
- Three householders in programme now on Carbon Coop board
- Others involved in open days and meetups to share learning and experience – staying involved and looking for further improvements (batteries, controls, monitoring....)





#### Conclusions

- SAP is not a perfect tool but 'good enough'?
- Stretching, fabric-based targets help
- Designers can be over optimistic and builders can under-perform (e.g. air-tightness).
- Getting close to expectations requires followthrough; design > construction > occupation.
- Assumptions about heating patterns, hot water use, electricity use all open to question and need development.
- All models are wrong, some are useful.
- What's possible within large-scale programmes?
   Speed and scale required.
- Future links with actual data....?



